Определение несущей способности одиночной сваи

Пример расчета буронабивных свай: по несущей способности, минимальному расстоянию

Возведение любого фундамента начинается с проектирования. Расчеты и чертежи могут быть выполнены без привлечения специалистов, самостоятельно. Конечно, эти вычисления не будут иметь высокую точность и представят собой упрощенный вариант расчета, но они могут дать представление о том, как обеспечить несущую способность фундамента. Далее рассмотрены буронабивные сваи и пример их расчета.

Порядок вычислений

Конструкторские работы выполняют в следующем порядке:

  • изучение характеристик грунта;
  • сбор нагрузок на фундамент;
  • расчеты по несущей способности, определение расстояния между сваями и их сечения.

О каждом пункте по порядку.

Геологические изыскания

При массовом строительстве характеристики для расчетчиков подготавливают геологи. Они берут пробы грунта, проводят лабораторные испытания и дают точные значения несущей способности того или иного слоя, расположение грунтов с различными характеристиками. Если буронабивные сваи используются для частного домостроения, проводить такие мероприятия экономически невыгодно. Работу выполняют самостоятельно двумя способами:

  • шурфы;
  • ручное бурение.

Важно! Характеристики изучаются в нескольких точках, все из них располагаются под пятном застройки здания. Одна — обязательно в самой низкой части поверхности земли. Глубину разработки грунта при исследовании характеристик почвы назначают на 50 см ниже предполагаемой отметки подошвы фундамента.

Шурф — яма прямоугольной или квадратной формы, грунт изучают, анализируя почву стенок отрытого шурфа. При бурении выполняют анализ почвы на лопастях бура. Ознакомившись с ГОСТ «Грунты. Классификация», определяют тип почвы. Для некоторых типов оснований, потребуется определить консистенцию или влажность. С данным вопросом поможет таблица1.

Внешние признаки и способыКонсистенция
Глинистые основания
Если грунт сжимают или ударяют, он рассыпается на кускиПолутвердый или твердый грунт
Образец трудно разминать, при попытке разлома бруска, перед тем как распасться на две части он сильно изгибаетсяТугопластичный
Сохраняет вылепленную форму, легко поддается лепкеМягкопластичный
Мнется руками без затруднений, но не сохраняет вылепленную формуТекучепластичный
Если образец поместить на наклонную поверхность, то он будет медленно по ней сползать (стекать)Текучий
Песчаные основания
Рассыпается при сжатии в руке, не имеет внешних признаков наличия влагиСухие
Проверку выполняют с помощью фильтровальной бумаги, она должна оставаться сухой или сыреть через промежуток времени. При сжатии в ладони образец дает ощущение прохладыМаловлажные
Образец кладут на фильтровальную бумагу и наблюдают сырое пятно. При сжатии создается ощущение влажности. Способен в течении некоторого времени сохранять формуВлажные
Встряхивают образец на ладони, он должен превращаться в лепешкуНасыщенные влагой
Растекается или расползается без внешнего механического воздействия (в покое)Переувлажненные

Определив по внешним признакам тип и консистенцию основания с применением ГОСТ «Грунты. Классификация» и таблицы, приступают к выяснению нормативных сопротивлений. Эти значения нужны для вычисления несущей способности фундамента и расчета расстояния между сваями.

Буронабивные сваи предают нагрузку не только на тот слой грунта, на который опираются, но и по всей боковой поверхности. Это увеличивает их эффективность.

В таблице 2 приводятся нормативные сопротивления оснований, в местах опирания на них подошвы буронабивных свай.

Коэффициент пористости грунта — это отношение объема пустот к общему объему породы. Чтобы вычислить размеры пор связных пород (глинистых) применяют такие величины как удельный и объемный вес.

Также при вычислении несущей способности буронабивных свай необходимо учитывать сопротивление по боковой поверхности. Значения для глинистых пород представлены в таблице 3.

Глубина, на которой залегает грунт, смНормативное сопротивление с учетом консистенции, т/м 2
полутвердая и твердаятугопластичнаямягкопластичная
502,800,800,30
1003,501,200,50
2004,201,700,70
3004,802,000,80

Выяснив все необходимые данные, связанные с сопротивлением грунтов приступают к следующему пункту расчета по несущей способности фундамента.

Сбор нагрузок

Здесь необходимо учесть массу всех конструкций. К ним относятся:

  • стены и перегородки;
  • перекрытия;
  • кровля;
  • временные нагрузки.

Первые три нагрузки относятся к постоянным. Они зависят от того, из каких материалов будет строиться дом. Чтобы вычислить массу стен, перекрытий или перегородок берут плотность материала, из которого планируется их изготавливать, и умножают на толщину и площадь. При расчете кровли все немного сложнее. Нужно учесть:

  • подшивку;
  • нижнюю и верхнюю обрешетку;
  • стропильные ноги;
  • утеплитель (если он есть);
  • кровельное покрытие.

Можно привести средние значения для трех самых распространенных типов кровельного покрытия:

  1. масса 1 м2 пирога крыши с покрытием из металлочерепицы — 60 кг;
  2. керамической черепицы — 120 кг;
  3. битумной (гибкой) черепицы — 70 кг.

К временным нагрузкам относят снеговую и полезную. Обе принимаются по СП «Нагрузки и воздействия». Снеговая зависит от климатического района, который определяют по СП «Строительная климатология». Полезная назначается в зависимости от назначения здания. Для жилого — 150 кг/м² перекрытий.

Вычислить все нагрузки недостаточно, каждую из них требуется умножить на коэффициент надежности.

  • коэффициент для расчета постоянных нагрузок зависит от материала и способа изготовления конструкции и принимается по таблице 7.1 СП «Нагрузки и воздействия»;
  • коэффициент для снеговой нагрузки — 1,4;
  • коэффициент для полезной в жилом доме — 1,2.

Все значения складывают и приступают к расчету буронабивных свай по несущей способности.

Формулы для вычислений

P = Росн + Рбок. пов-ти,

где Р — несущая способность сваи, Росн — несущая способность сваи у основания, Рбок. пов-ти — несущая способность боковой поверхности.

Росн = 0,7 * Rн * F,

где Rн — нормативная несущая способность из таблицы 2, F — площадь основания буронабивной сваи, а 0,7 — коэффициент однородности грунта.

Рбок. пов-ти = 0,8 * U * fiн * h,

где 0,8 -коэффициент условий работы, U — периметр сваи по сечению, fiн — нормативное сопротивление грунта у боковой поверхности буронабивной сваи по таблице 3, h — высота слоя грунта, контактирующего с фундаментом.

где Q — нагрузка на погонный метр фундамента от здания, М — сумма всех нагрузок от конструкций здания, вычисленная ранее, Uдома — периметр здания.

Важно! Если дом имеет большую площадь и предусмотрен монтаж внутренних стен, под которые будет устроен фундамент, их длину прибавляют к периметру для расчета расстояния между буронабивными сваями фундамента.

где P и Q — найденные ранее значения, а L — максимальное расстояние между сваями.

Рекомендуем:  Крючок для вязки арматуры и другие инструменты и приспособления

Расчет для вычисления расстояния между сваями фундамента обычно проводится несколько раз. При этом подбираются разные сечения и глубина заложения.

Важно! За счет того, что работает не только опорная часть буронабивного фундамента, несущая способность с увеличением глубины заложения в большинстве случаев повышается (зависит от характеристик основания для фундамента). При проектировании опоры для будущего дома рекомендуется рассмотреть несколько примеров, изменяя сечение и глубину заложения. Рассчитывается расстояние между сваями и их количество. После этого «прикидывается» смета (точные вычисления могут быть трудоемки, поэтому достаточно примерных значений), и выбирается наиболее экономичный вариант.

Перед расчетом нужно ознакомиться с СП «Свайные фундаменты». По требованиям этого норматива буронабивные сваи длиной до 3 метров рекомендуется предусматривать диаметром от 30 см.

Пример расчета

  • Геологические условия местности: на глубине 2 метра от поверхности почвы залегают суглинки тугоплатичные, далее на всю глубину исследования располагаются твердые глины с коэффициентом пористости 0,5.
  • Снеговая нагрузка — 0,18 т/м².
  • Требуется спроектировать фундамент под одноэтажный дом с мансардой. Размеры дома в плане — 4 на 8 метров, кровля с покрытием из металлочерепицы вальмовая (высота наружной стены по всем сторонам одинаковая), стены из кирпича толщиной 0,38 м, перегородки гипсокартонные, перекрытия — железобетонные плиты. Высота стен в пределах первого этажа — 3 метра, на мансардном этаже наружные стены имеют высоту 1,5 метра. Внутренних стен нет (только перегородки).
  1. масса стен = 1,2 * (24 м (периметр дома) * 3м (первый этаж) + 24 м * 1,5 м (мансарда))*0,38 м * 1,8 т/м³ (плотность кирпичной кладки) = 88,65 т (1,2 — коэффициент надежности по нагрузке);
  2. масса перегородок = 1,2 * 2,7 м (высота) * 20 м (общая длина) * 0,03 т/м² (масса квадратного метра перегородок) = 2 тонны;
  3. масса перекрытий с учетом цементной стяжки 3 см = 1,2 * 0,25 м (толщина) * 32 м²(площадь одного перекрытия) * 2(пол первого этажа и пол мансарды) * 2,5 т/м² = 48 тонн;
  4. масса кровли = 1,2 * 4 м * 8 м * 0,06 т/м² = 2,3 тонны;
  5. снеговая нагрузка = 1,4 * 4 м * 8 м * 0,18 т/м2 = 8,1 тонн;
  6. полезная нагрузка = 1,2 * 4 м * 8 м * 0,15 т/м² * 2 (2 перекрытия) = 11,5 тонн.

Итого: М = 112,94 т. Периметр здания Uдома = 24 м, нагрузка на погонный метр Q= 160,55/24 = 6,69 т/м. Предварительно подбираем сваю диаметром 30 см и длиной 3 м.

По формулам для определения расстояния между сваями

Все необходимые формулы приведены ранее, нужно просто воспользоваться ими по порядку.

1. F= 3,14 D²/4(площадь круглой сваи) = 3,14 * 0,3 м * 0,3 м / 4 =0,071 м², U = 3,14 D = 3,14*0,3 м = 0,942м; (периметр сваи по кругу);

2. Pосн = 0,7 * 90 т/м² * 0,071 м2 = 4,47 т;

3. Рбок. пов-ти = 0,8 * (2,8 т/м² * 2 м + 4,8 т/м² * 1) * 0,942 = 7,84 т;

В этой формуле 2,8 т/м² — расчетное сопротивление боковой поверхности сваи в тугопластичном суглинке, 2м — высота слоя суглинка, в котором располагается фундамент. Сопротивление находят по таблице 3. Там представлены значения для подходящей в данном случае глубины 50, 100 и 200 см. В расчет принимаем минимальное для того, чтобы обеспечить запас по несущей способности.

4,8 т/м² — расчетное сопротивление боковой поверхности сваи в полутвердой глине, 1м — высота фундамента, располагающегося в этом слое. Последнее число в формуле — найденный в первом пункте периметр сваи. Значения 0,7 и 0,8 в пунктах 2 и 3 — коэффициенты из формул.

4. Р = 4,47 т + 7,84 т = 12,31 т (полная несущая способность одной сваи);

5. L = 12,31 т/6,69 т/м = 1,84 м — максимальное значение расстояния между сваями (между центрами).

Назначаем расстояние 1,8 м. Т.к. длина наших стен кратна 2 м метрам, удобнее чтобы и расстояние между сваями было 2 м, для этого нужно немного увеличить несущую способность сваи, например увеличив её диаметр. Если полученное значение шага достаточно велико, разумнее найти минимальное, поскольку, чем больше расстояние между сваями, тем больше понадобиться сечение ростверка, что приведет к дополнительным затратам. По такому же принципу выполняют расчеты для уменьшенного диаметра. Рассчитывают применое количество материала для нескольких вариантов и подбирают оптимальное значение.

Определение несущей способности одиночной сваи

Сваи_в_однородном_грунте_01.png

Отметка рельефа по скважине 1 = 0 м, отметка головы сваи находится в интервале от +1 до -3 м с шагом 1 м в абсолютных координатах модели грунта. Длину сваи принимаем = 6 м. Свая целиком находится в ИГЭ №4 В инженерно-геологическом разрезе находится только один слой грунта.

Сваи_в_однородном_грунте_04.png

Скриншот окна Системы ГРУНТ с изображением инженерно-геологического разреза с посадкой свай

4. Геометрические размеры

h (глубина заложения нижнего конца сваи от рельефа) = 5…9 м
U (периметр) = 4*d = 4*0.3 = 1.2 м
А (площадь) = d 2 = 0.3 2 = 0.09 м 2

5. Коэффициенты при расчётах

Сваи_в_однородном_грунте_05.png

Скриншот окна Параметров определения теоретической несущей способности свайного основания СП 24.13330.2011

Yc = 1, для забивных свай, по п.7.2.2;
Ycr = 1 (погружение сплошных свай дизель-молотами), таблица 7.4, п.1;
Ycf = 1 (погружение сплошных свай дизель-молотами), таблица 7.4, п.1.

6. Определение несущей способности каждой сваи

Определение расчётного сопротивления грунта под нижним концом сваи выполняется по таблице 7.2:

Сваи_в_однородном_грунте_06.png

Таблица 7.2 СП 24.13330.2011. Цветом выделены диапазоны для определения R в рамках решаемой задачи

Определение расчётного сопротивления грунта по боковой поверхности сваи выполняется по таблице 7.3:

Сваи_в_однородном_грунте_07.png

Таблица 7.3 СП 24.13330.2011. Цветом выделены диапазоны для определения fi в рамках решаемой задачи

Свая №1

Сваи_в_однородном_грунте_08.png

Схема к определению несущей способности сваи №1

Расчёт несущей способности сваи

Сваи_в_однородном_грунте_08_f1.png

Определение расчётного сопротивления под нижним концом сваи №1 по таблице 7.2:
R =2800 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;

Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=11.5 кПа (глубина 0.5), f2=26.5 кПа (глубина 1.5), f3=32.5 кПа (глубина 2.5), f4=36.5 кПа (глубина 3.5), f5=39 кПа (глубина 4.5).

Свая №2

Сваи_в_однородном_грунте_09.png

Схема к определению несущей способности сваи №2

Расчёт несущей способности сваи

Сваи_в_однородном_грунте_09_f2.png

Определение расчётного сопротивления под нижним концом сваи №2 по таблице 7.2:
R=3050 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;

Рекомендуем:  Фундамент под забор из профнастила: разновидности конструкций и этапы монтажа

Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=11.5 кПа (глубина 0.5), f2=26.5 кПа (глубина 1.5), f3=32.5 кПа (глубина 2.5), f4=36.5 кПа (глубина 3.5), f5=39 кПа (глубина 4.5), f6=41 кПа (глубина 5.5);

Свая №3

Сваи_в_однородном_грунте_10.png

Схема к определению несущей способности сваи №3

Расчёт несущей способности сваи

Сваи_в_однородном_грунте_10_f3.png

Определение расчётного сопротивления под нижним концом сваи №3 по таблице 7.2:
R=3300 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;

Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=26.5 кПа (глубина 1.5), f2=32.5 кПа (глубина 2.5), f3=36.5 кПа (глубина 3.5), f4=39 кПа (глубина 4.5), f5=41 кПа (глубина 5.5), f6=42.5 кПа (глубина 6.5);

Свая №4

Сваи_в_однородном_грунте_11.png

Схема к определению несущей способности сваи №4

Расчёт несущей способности сваи

Сваи_в_однородном_грунте_11_f4.png

Определение расчётного сопротивления под нижним концом сваи №4 по таблице 7.2:
R=3367 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;

Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=32.5 кПа (глубина 2.5), f2=36.5 кПа (глубина 3.5), f3=39 кПа (глубина 4.5), f4=41 кПа (глубина 5.5), f5=42.5 кПа (глубина 6.5), f6=43.5 кПа (глубина 7.5);

Свая №5

Сваи_в_однородном_грунте_12.png

Схема к определению несущей способности сваи №5

Расчёт несущей способности сваи

Сваи_в_однородном_грунте_12_f5.png

Определение расчётного сопротивления под нижним концом сваи №5 по таблице 7.2:
R=3433 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;

Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=36.5 кПа (глубина 3.5), f2=39 кПа (глубина 4.5), f3=41 кПа (глубина 5.5), f4=42.5 кПа (глубина 6.5), f5=43.5 кПа (глубина 7.5), f6=44.5 кПа (глубина 8.5).

7. Сравнение с результатами расчёта в LIRA SAPR версии 2021 R1.2

ПараметрРезультаты ручного расчёта (вычисление глубины погружения от рельефа)Результаты ЛИРА-САПРПогрешность (вычисление глубины погружения от рельефа)
Несущая способность Свая №144.97 т44.97 т0.0 %
Несущая способность Свая №252.28 т52.28 т0.0 %
Несущая способность Свая №356.96 т56.96 т0.0 %
Несущая способность Свая №459.65 т59.65 т0.0 %
Несущая способность Свая №561.73 т61.73 т0.0 %

Несущая способность свай

Несущая способность свай — это максимальная величина нагрузки, которую способна выдерживать погруженная в грунт свая, не подвергаясь деформациям.

Оглавление:

несущая способность свай

  • Методы определения несущей способности сваи
  • Методы определения несущей способности грунта
  • Несущая способность свай СНИП
  • Несущая способность буронабивной сваи
  • Несущая способность забивной ЖБ сваи
  • Несущая способность винтовой сваи
  • Как улучшить несущую способность сваи
    • Инъектирование грунта
    • Увеличение диаметра опорной подошвы сваи

Существует два типа несущей способности свай — по материалу изготовления и по грунту. Данные о несущей способности конструкции исходя из ее материала могут быть получены при проведении теоретических расчетов, тогда как определение несущей способности сваи по грунту требует проведения практических исследований на месте строительства.

Методы определения несущей способности сваи

При проектировании свайных фундаментов используются четыре метода определения несущей способности свайных конструкций:

  • Способ теоретического расчета;

Совет эксперта! данный метод является предварительным, полученные результаты в последствии корректируются на основании фактических данных о характеристиках грунта.

Расчет несущей способности выполняется по формуле: Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li)

  • Yc — совокупный коэфф. условий работы;
  • Ycr — коэфф. сопротивления почвы под опорной подошвой сваи;
  • R — сопротивление почвы под опорной подошвой сваи;
  • А — диаметр опорной подошвы;
  • U — периметр сечения свайного столба;
  • Ycri — коэфф. условий работы грунта по боковым стенкам сваи;
  • fi — сопротивление почвы по боковым стенкам;
  • li — длина боковых поверхностей.

статические нагрузки на сваю

Практический способ реализуемый в полевых условиях. После отдыха сваи (спустя 2-3 дня после забивки столба), на конструкцию с помощью ступенчатого домкрата передается статическая нагрузка.
Посредством специального прибора — прогибометра, определяется величина усадки сваи и производятся необходимые расчеты. Данный метод считается одним из наиболее точных.
Рис 1.1: Определение несущей способности сваи методом пробных статистических нагрузок

  • Метод динамических нагрузок;

Исследования проводятся на уже погруженных сваях по истечению периода отдыха столбов. На конструкцию посредством дизель молота передается ударная нагрузка (до 10 ударов). После каждого удара прогибометром определяется степень усадки сваи. Данный способ реализуется в комплексе со статическим методом.

прогибометр

Рис 1.2: Прогибометр — прибор для измерения усадки сваи

  • Метод зондирования.

Для реализации метода зондирования свая снабжается специальным датчиками, после чего выполняется ее погружение на проектную глубину посредством ударной нагрузки (динамическое зондирование) либо вибропогружателями (статическое зондирование).

Датчики определяют сопротивление грунта боковой и нижней стенки свайного столба, по которой рассчитывают несущую способность конструкции в конкретном типе почвы.

Схема метода зондирования свай

Рис. 1.3: Схема метода зондирования свай

Методы определения несущей способности грунта

Несущая способность почвы — один из важнейших параметров, учитываемых во время проектирования свайных оснований.

Данная величина демонстрирует, какую нагрузку из вне способна переносить условная площадь грунта (она, как правило, существенно ниже несущей способности самой сваи). Несущая способность почвы рассчитывается в двух показателях — тонн/м2 либо кг/см2.

На несущую способность грунта оказывают непосредственное влияние следующие факторы:

  • Тип почвы;
  • Насыщенность влагой;
  • Плотность.

Совет эксперта! Почва, чрезмерно насыщенная влагой, относится к категории проблемных грунтов, поскольку чем большее количество влаги она содержит, тем меньшими будут ее несущие характеристики.

Чтобы определить несущие свойства грунта необходимо проводить геодезические изыскания — для этого выполняется бурение пробной скважины, из которой берутся пробы разных слоев почвы. Все исследования и расчеты проводятся в строительно-испытательных лабораториях с применением специального оборудования.

Представляем вашему вниманию таблицу несущей способности основных типов грунтов:

Таблица несущей способности разных видов грунтов

Таблица 1.1: Несущая способность разных видов грунтов

При отсутствии возможности провести геодезические исследования вы можете самостоятельно определить ориентировочную несущую способность грунта, для этого с помощью ручного бура создайте скважину (до двух метров), опознайте тип почвы и сопоставьте ее с табличными данными.

Несущая способность свай СНИП

Важно! Исследования и расчеты направленные на определение несущих характеристик свай необходимо выполнять согласно требований СНиП № 2.02.03-85 «Свайные фундаменты».

Рекомендуем:  Арматура: вес 1 метра, стандартная длина стержня, количество в тонне

Несущая способность буронабивной сваи

Буронабивные сваи — конструкции, обладающие наибольшими несущими характеристиками среди всех видов свай.

Это сваи, сформированные в результате заполнения бетоном предварительно пробуренной скважины, они укреплены арматурным каркасом и, как правило, обладают уширенной опорной пятой, которая способствует равномерному распределению оказываемой на почву нагрузки.

этап создания буронабивной сваи

Рис. 1.4: Этапы создания буронабивных свай

Расчет несущих свойств буронабивных свай выполняется по формуле: Fdu = R×A+u×∫ ycf ×Fi×Hi, в которой:

  • R — нормативное сопротивление почвы под опорной пятой сваи;
  • А — площадь опорной пяты;
  • u — периметр сечения свайного столба;
  • Ycf — коэфф. условий работы грунта на боковой стенке столба (=1);
  • Fi — среднее сопротивление боковой поверхности опорной пяты;
  • Hi — толщина слоев почвы контактирующих с боковой стенкой свайного столба.
  • R, Fi и Hi — это нормативные данные, которые вы можете взять из нижеприведенных таблиц.

таблица расчетных сопротивлений на боковых стенка свай (Fi)

Таблица 1.2: Расчетные сопротивления на боковых стенка свай (Fi)

Расчетная толщина слоев почвы контактирующей с боковыми стенками сваи (Hi)

Таблица 1.3: Расчетная толщина слоев почвы контактирующей с боковыми стенками сваи (Hi)

таблица сопротивления разных типов грунтов

Таблица 1.4: Сопротивление разных типов грунтов под опорной подошвой сваи (R)

Увидеть усредненные показатели несущих характеристик буронабивных свай вы можете в нижеприведенной таблице.

несущая способность буронабивных свай

Таблица 1.5: Несущая способность буронабивных свай

Несущая способность забивной ЖБ сваи

Фактические несущие характеристики забивных ЖБ конструкций (Fd) рассчитывается как совокупность сопротивления почвы под нижней частью свайного столба (Fdf) и сопротивления по отношению к ее боковым стенкам (Fdr).

Формула расчета следующая: Fd=Ycr ×(Fdf+Fdr), где:

Fdf = u * ∑Ycf * Fi * Hi

  • u — внешний периметр сечения ЖБ столба;
  • Ycr — коэф. условий работы столба в почве (=1);
  • Fi — сопротивление слоев почвы на боковой стенке сваи;
  • Hi — общая толщина слоев почвы контактирующих с боковой стенкой свайного столба
  • Fdr = Ycr * R * A
  • R — нормативное сопротивление почвы под нижним концом сваи;
  • А — площадь опорной подошвы.

Несущие характеристики забивных железобетонных свай вы можете посмотреть в таблице

таблица несущих характеристик забивных ЖБ свай

Таблица 1.6: Несущие характеристики забивных ЖБ свай

Несущая способность винтовой сваи

Винтовые сваи — наиболее распространенный тип в свай в частном строительстве. Монтаж винтовых свай выполняется в кратчайшие сроки, а их несущих характеристик с запасом хватает для обустройства надежного фундамента под строительство 1-2 этажного дома из легких материалов.

виды винтовых свай

Рис 1.5: Виды винтовых свай

Формула расчета несущей способности винтовой сваи: Fd=Yc*((a1с1+a2y1h1)A+u*fi(h-d))

Yc — коэф. условий работы столба в почве;
a1 и a2— нормативные коэфф. из таблицы:

таблица нормативных коэффициентов угла внутреннего трения грунта

Таблица 1.7: Нормативные коэффициенты угла внутреннего трения грунта

  • с1 — коэфф. линейности почвы (для песчаных грунтов) либо значение удельного сцепления (для глинистых);
  • y1 — удельный вес почвы расположенной выше лопастей сваи;
  • h1 — глубина расположения сваи;
  • А — диаметр винтовых лопастей за вычетом диаметра столба сваи;
  • fi — сопротивление почвы по боковым стенкам сваи;
  • u — периметр свайного столба;
  • h — общая длина ствола сваи;
  • d — диаметр опорных лопастей.

Предлагаем вашему вниманию характеристики несущих способностей наиболее распространенных в строительстве типоразмеров винтовых свай.

Таблица несущей способности винтовых свай диаметром 76 мм.

Таблица 1.8: Несущая способность винтовых свай диаметром 76 мм.

Таблица несущей способности винтовых свай диаметром 89 мм.

Таблица 1.9: Несущая способность винтовых свай диаметром 89 мм.

Как улучшить несущую способность сваи

Среди технологий увеличения несущей способности свайных оснований существуют как универсальные способы, применимые к свай любого типа, так и индивидуальные методы, которые реализуются отдельно для забивных и винтовых конструкций.

Инъектирование грунта

Это максимально эффективный метод увеличение несущих характеристик любых свай расположенных в дисперсных грунтах с невысокой плотностью.

Инъекции в грунт песчано-цементного раствора выполняются в пространство между сваями на глубину в 1-2 метра ниже крайней точки свайного столба.

Для подачи раствора используются специальные строительные инъекторы, при этом раствор нагнетается под постоянно возрастающим давлением (от 2 до 10 атмосфер) в результате чего в грунте создаются полости радиусом до 2 метров.

Усиление несущей способности свайного фундамента инъектированием

Рис 1.6: Усиление несущей способности свайного фундамента инъектированием (1 — бетон, 2 — сваи)

Сетка инъекций рассчитывается так, чтобы расположенные по периметру свайного основания бетонные полости примыкали друг к другу.

Совет эксперта! После отвердевания бетона в грунте наблюдается серьезное повышение несущей способности почвы (при качественно реализованной технологии — двукратное).

Увеличение диаметра опорной подошвы сваи

Пята сваи — основная опорная точка заглубленного в грунт столба. При обустройстве свайных фундаментов в грунтах с низкой несущей способностью рационально использовать сваи с уширенной опорной подошвой, так как с увеличением ее диаметра значительно несущие характеристики конструкции.

При обустройстве оснований на сваях винтового типа с этим проблем не возникает, поскольку механизированный способ погружения позволяет завинчивать металлические сваи с достаточно большим диаметром лопастей, тогда как забивные ЖБ сваи с уширением погрузить невозможно ни ударным ни вибрационным методом из-за высокого сопротивления грунта.

Совет эксперта! Для создания опорного уширения забивных ЖБ свай используется два метода — обустройство камуфлетных свай и бурение лидерных скважин буром-расширителем.

схема создания камуфлетных буронабивных свай

Рис 1.7: Схема создания камуфлетных буронабивных свай

Камуфлетные буронабивные сваи — конструкции, уширение в нижней части которых создано посредством взрыва детонирующего вещества внутри лидерной скважины. После камуфлетирования полученное уширение заполняется бетонным раствором и в скважину погружается ЖБ свая.

Наши услуги

Мы, строительная компания «Богатырь», базируемся на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Поделитесь с друзьями

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *