Теплотехнический расчет с примером

Теплотехнический расчет стены.

Схема для теплотехнического расчета стены

Мы уже ознакомились в статье «Материал стен. Как выбрать.» с различными материалами для возведения стен, в данной статье мы поговорим о теплотехническом расчете для определения параметров стены.

После того, как мы определились с материалом стены, возникает вопрос — Какой же толщины сделать стену, чтобы в доме зимой было тепло, а летом прохладно? Для этого нам понадобится выполнить теплотехнический расчет стены. Расчет выполняется по нормативной документации.

Необходимые для расчета нормативные документы:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года.
  • СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года.
  • СП 23-101-2004. «Проектирование тепловой защиты зданий».
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

Исходные данные для расчета:

  1. Определяем климатическую зону, в которой мы собираемся построить дом. Открываем СНиП 23-01-99*.»Строительная климатология», находим таблицу 1. В данной таблице находим свой город (или максимально близко расположенный от места строительства город), например, для строительства в деревне, расположенной возле г. Муром, мы возьмем показатели г. Мурома! из столбца 5 — «Температура воздуха наиболее холодной пятидневки, с обеспеченностью 0,92» — «-30°С»;
  2. Определяем продолжительность отопительного периода — открываем таблицу 1 в СНиП 23-01-99* и в столбце 11 (со средней суточной температурой наружного воздуха 8°С) продолжительность равна zht = 214 сут;
  3. Определяем среднюю температуру наружного воздуха за отопительный период, для этого из той же таблицы 1 СНИП 23-01-99* выбираем в столбце 12 значение — tht = -4,0°С .
  4. Оптимальную температуру внутри помещения принимаем по таблице 1 в ГОСТ 30494-96 — tint= 20°С;

Затем, нам необходимо определиться с конструктивом самой стены. Поскольку раньше строили дома из одного материала (кирпич, камень и т.п.) — стены были очень толстые и массивные. Но, с развитием технологий, у людей появились новые материалы, обладающие очень хорошими показателями теплопроводности, что позволило значительно сократить толщину стен из основного (несущего материала) добавлением теплоизолирующего слоя, таким образом появились многослойные стены.

Основных слоев в многослойной стене минимум три:

  • 1 слой — несущая стена — её назначение передавать нагрузку от вышележащих конструкций на фундамент;
  • 2 слой — теплоизоляция — её назначение максимально задерживать тепло внутри дома;
  • 3 слой — декоративный и защитный — её назначение делать красивым фасад дома и одновременно защищать слой утеплителя от воздействия внешней среды (дождь, снег, ветер и т.п.);

Рассмотрим для нашего примера следующий состав стены:

  • 1 слой — несущую стену мы принимаем газобетонных блоков толщиной 400мм (принимаем конструктивно — с учетом того, что на неё будут опираться балки перекрытия);
  • 2 слой — выполняем из минераловатной плиты, её толщину мы и определим теплотехническим расчетом!
  • 3 слой — принимаем облицовочный силикатный кирпич, толщина слоя 120 мм;
  • 4 слой — поскольку изнутри наша стена будет покрыта слоем штукатурки из цементно-песчаного раствора, тоже включим её в расчет и назначим её толщину 20мм;

Теплотехнический расчет.

Приступаем непосредственно к теплотехническому расчету, а именно — нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.
В первую очередь — определяем норму тепловой защиты из условий соблюдения санитарных норм.
Согласно формулы 3 из СНиП 23-02-2003 «Тепловая защита зданий» рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:

Формула расчета нормативного сопротивления теплопередаче

где:
n = 1 — коэффициент, принятый по таблице 6, из СНиП 23-02-2003 «Тепловая защита зданий» для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);

tint = 20°С — оптимальная температура в помещении, из исходных данных;

text = -30°С — температура наиболее холодной пятидневки, значение из исходных данных;

Δtn = 4°С — данный показатель принимается по таблице 5, из СНиП 23-02-2003 «Тепловая защита зданий» он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);

αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 «Тепловая защита зданий» для наружных стен.

Расчет нормативного сопротивления теплопередаче

Выполняем расчет:

получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;

Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.

Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:

Dd = (tint — tht)zht = (20 + 4,0)*214 = 5136°С×сут

Примечание: градусо-сутки ещё имеют сокращенное обозначение — ГСОП.

Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:

Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,

где: Dd — градусо-сутки отопительного периода в г. Муром,

a и b — коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 «Тепловая защита зданий» для стен жилого здания.
таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;

Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;

Определение толщины утеплителя

Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:

где:
δi- толщина слоя, мм;
λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

Рассчитываем термическое сопротивление для каждого слоя
1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.
3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:

Определение минимально допустимого термического сопротивления материала

Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности,

αext принимается по таблице 14 [5] для наружных стен;

ΣRi = 0,116 + 0,104 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Рекомендуем:  Полуавтоматическая сварка - рассказываю начинающим, как с ней работать

Толщина утеплителя равна:

Расчет минимальной толщины утеплителя

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:

Формула расчета термического сопротивления материала

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.

Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.

Теплотехнический расчет с примером

Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года [1].
  • СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года [2].
  • СП 23-101-2004. «Проектирование тепловой защиты зданий» [3].
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях» [4].
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].

Скачать СНиПы и СП вы можете здесь, ГОСТ — здесь, а Пособие — здесь.

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое .

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Расчет толщины утеплителя

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.

теплопроводности слоев стены

Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

Примечание: также градусо-сутки имеют обозначение — ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,

где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,

a и b — коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

расчет нормативного сопротивления теплопередачи по условию санитарии

где: n = 1 — коэффициент, принятый по таблице 6 [1] для наружной стены;

tint = 20°С — значение из исходных данных;

text = -31°С — значение из исходных данных;

Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;

αint = 8,7 Вт/(м 2 ×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.

Рекомендуем:  Какие существуют сверла по бетону для перфоратора и как правильно ими пользоваться

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .

3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .

4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):

где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;

ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт

Толщина утеплителя равна (формула 5,7 [5]):

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Как рассчитать теплопроводность стены самостоятельно

Создание оптимального уровня утепления помещения, помогает не только сэкономить средства, но и улучшить микроклимат в целом. Важно положить теплоизоляцию так, чтобы не происходило перегрева стен, а также не было промерзающих участков. По этой причине проводится теплотехнический расчет стены. Он помогает точно рассчитать, какая толщина утеплителя требуется, учитываются разные факторы. Подробно о важности вычислений и о правилах проведения расчетов для работы с фасадом дома будет рассказано далее.

Фото теплоизоляции стен

Теплотехнический расчет конструкций — что это такое и для чего нужно делать

Теплотехнический расчет наружной стены помогает получить точную цифру по объему тепла, который необходим, чтобы в здание было максимально комфортно находиться. Является основой для создания отопления. В любом помещение происходит теплообмен, отдается тепло во внешнюю среду, и эту отдачу необходимо возвращать обратно. Уровень потери тепла должен возвращаться внутрь в том же количестве.

Определить, сколько тепловой утрата следует восстановить для хорошего микроклимата, не проводя расчет теплопроводности стены верно в принципе невозможно. Результат почти со стопроцентной вероятностью будет с большим отклонением от правды.

В расчет стен по тепловым моментам профессионалы включают учет множества параметров, каждый из которых существенно воздействуют на данный показатель. Важны материалы, которые применяются, стороны света, температурные показатели воздуха и другие.

Если не провести подобный расчет, то приобретение системы отопления, отопительного котла, теплого пола и другого связанного с данным процессом оборудование может быть произведено не верно. В итоге можно столкнуться с проблемой недостаточного тепла, когда потеря его будет большей, чем возмещение.

Придется менять оборудование, а это дело дорогостоящее. С учетом сложности монтажа теплого пола потеря будет не только денежная, но временная. Когда установлен весь отделочный материал снятие материалов будет большой проблемой, ведь процедура не самая приятная для владельца. А жить в холодном жилом помещение, мало кому хочется.

Таким образом, можно сказать, что тепловой расчет стены помогает сэкономить деньги, нервы и время.

Теплопроводность метариалов

Теплотехнический расчет наружной стены помогает получить точную цифру по объему тепла, который необходим, чтобы в здание было максимально комфортно находиться.

Можно выделить следующие плюсы проведения расчетов:

  • Экономическая выгода за счет дальнейшей оплаты за отопление, когда проведены правильные работы по утеплению, то переплачивать каждый месяц по счету не приходится, в итоге процесс оправдывается финансово;
  • Оптимальный микроклимат помогает избежать образования грибка и плесени на поверхности, что является опасным для здоровья человека, также данные образования вредят целостности материала;
  • Траты на электроэнергию также будут меньше, ведь оборудование не должно будет работать излишне.

Теплоизоляция фасада

Когда проведены правильные работы по утеплению, то переплачивать каждый месяц по счету не приходится.

Требования и сопутствующая документация

Рассчитать теплопроводность стены можно только с учетом регламентирующих процесс документов. Разработано несколько документов, где прописаны нормы и правила работы. Вычисления будут зависеть от вида материала, из которого построен дом: газобетонные блоки, кирпич, газоблок, брус, сэндвич панели и другие. Каждый имеет свои нормы теплопроводности.

Используются следующие издания для правильного подсчета:

  • Ориентируются на СП 50.13330.2012 «Тепловая защита зданий», это переизданная версия от 2003 года, профессионалы при работе используют данный норматив как основной;
  • СП 131.13330.2012 «Строительная климатология», также основана на более раннем издании 1999, служит основой для ориентира на климат региона, где расположено здание;
  • СП 23-101-2004 «Проектирование тепловой защиты зданий», данный документ является раскрывающим 1-ый документ, в нем многие пункты расписаны подробнее;
  • ГОСТ 30494-2011 с 2011 года «Здания жилые и общественные», прежняя версия издана в 1996, о специфике назначений зданий и их особенностях;
  • Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие». Помогает проще понять специфику задания, раскрывает многие моменты.
Рекомендуем:  Инсоляция дома. Что нужно знать?

Сравнение теплоизоляции

Вычисления будут зависеть от вида материала, из которого построен дом.

Как делать теплотехнический расчет стен дома

Проведение данных подсчетов должно помочь узнать, одинаковы ли сооружения предъявляемым требования со стороны теплозащиты. Определяет качество создаваемых микроклиматических условий в помещение. Справляется ли система отопления с получением необходимого уровня теплового комфорта.

Чтобы добиться оптимальных условий должен быть создан балансирующий температурный режим между внутренними ограждающими конструкциями и помещением. Если он не воссоздан, то все тепло будет уходить в эти зоны, а до основной жилой части не дойдет.

На температурные показатели внутри здания оказывать влияние смена тепловых потоков существенно не должны. Данный уровень носит название теплостойкость.

В результате расчетов получают лучшие варианты для размеров стены, перекрытых по толщине, при этом вычисляются минимальный и максимальный показатель. В итоге соблюдения данных результатов, много лет помещение не будет перемерзать, а также перегреваться.

Фото утепления стены

Чтобы добиться оптимальных условий должен быть создан балансирующий температурный режим между внутренними ограждающими конструкциями и помещением.

Основные параметры необходимые для выполнения расчетов

Теплопередача вычисляется с учетом целого ряда параметров, без которых получить правильные цифры не получится. То, какими они будут, определяет нижеописанные характеристики:

  • Предназначение конструкции и ее вид;
  • Ориентиры конструкционных ограждений по вертикали соответственно направлению по сторонам света;
  • Географическое местоположение планируемого дома;
  • Размеров сооружения, сколько этажей будет, общая площадь;
  • Виды окон и дверей, которые будут установлены, также их размеры;
  • Тип отопления и его технические особенности;
  • Сколько людей постоянно будут проживать в данном здании;
  • Из какого типа материала, выполненные вертикальные и горизонтальные конструкции, служащие ограждением;
  • Вид перекрытие последнего этажа;
  • Наличие или отсутствие горячего водоснабжения;
  • Какой тип оборудования будет вентилировать дом.

Фото таблицы теплопроводности

Теплопередача вычисляется с учетом целого ряда параметров, без которых получить правильные цифры не получится.

Особенности теплотехнического расчета наружных стен здания методом анализа используемого утеплителя

Какой утеплитель будет лучше всего использовать необходимо, важно определять так же, как необходимый уровень прочности, долговечности, устойчивости к огню и т.п. параметры при строительстве дома. Холодный воздух, который есть снаружи дома, и теплый внутри могут при неправильном выборе утеплителя и его толщины создать на стенках конденсат, особенно это проявляется в подвалах, где влажность повышена. Подобная боковая прослойка должна быть подобрана с учетом теплопроводности.

Будет приведен пример, который поможет проще понять принцип расчетов. В доме ведется расчет для угловой жилого типа комнаты, в которой есть 1окно размером в 8.12. Здание построено в Московской области. Толщина стен составляет 200мм, размер площади по внешним критериям – 3000х3000.

Требуется выяснить необходимую мощность, чтобы согревать один квадратный метр площади. Ответом будет Qуд = 70 Вт, если установят более тонкий утепляющий материала, то и мощность будет требоваться больше: 100 мм – Qуд= 103 Вт.

Утепление фасада

Подобная боковая прослойка должна быть подобрана с учетом теплопроводности.

Пример расчета внешней трехслойной стены без воздушной прослойки

Чтобы было проще вычислять требуемые параметры, можно воспользоваться теплокалькулятором стен. В него требуется забивать определенные критерии, которые влияют на итоговый результат. Программа помогает быстро и без долгого вникания в математические формулы получить нужный результат.

Требуется по описанным выше документам найти конкретные показатели под выбранный дом. Первое выясняют климатические условия населенного пункта, а также климат помещения. Следом вычисляют прослойки стены, все которые есть в здание. Здесь учитываются и штукатурный слой, гипсокартон и утепляющие материалы, имеющиеся в доме. Также толщина газобетона или другого материала, из которой создана конструкция.

Теплопроводность каждого из этих слоев стены. Показатели указываются производителями каждого материала на упаковке. В итоге программа посчитает по необходимым формулам нужные показатели.

Теплокалькулятор стен

Чтобы было проще вычислять требуемые параметры, можно воспользоваться теплокалькулятором стен.

Влияние воздушного зазора на теплозащитные характеристики

Теплотехник должен учитывать воздушную прослойку, которая обязательно оставляется для плитного материала утеплителя таких, как минвата и т.п. При их монтаже оставляется зазор, чтобы материал мог проветриваться от образуемого во время эксплуатации конденсата, обычно это расстояние равно 20-40мм. Она не относится к замкнутым пространствам, что требует учитывать нижеописанные моменты:

  • Слои сооружения, которые находятся между зазором и внешней стеной, когда делается теплотехнические вычисления, этот фактор не принимают во внимание;
  • На основании постройки со стороны, смотрящей на сторону подвергающуюся вентиляции прослойкой, учитывают коэффициент теплоотдачи.

Данный зазор принимают во внимание, например, когда проводят вычисление для пластиковых стеклопакетов.

Воздушная прослойка

Теплотехник должен учитывать воздушную прослойку, которая обязательно оставляется для плитного материала утеплителя.

Проведение теплотехнических вычислений может существенно сэкономить бюджет, за счет получения оптимального тепла, используя меньшее количество энергии. Но при этом необходимо учитывать много факторов, разбираться в нормативных документах, лучшим вариантом будет обращения за расчетами к профессионалам.

Видео: Теплотехнический расчет стен, перекрытий и окон в онлайн калькуляторе

Поделитесь с друзьями

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *